Caenorhabditis elegans germ granules are present in distinct configurations that differentially associate with RNAi-targeted RNAs.
Celja J UebelSanjana RajeevCarolyn Marie PhillipsPublished in: bioRxiv : the preprint server for biology (2023)
RNA silencing pathways are complex, highly conserved, and perform widespread, critical regulatory roles. In C. elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments-P granules, Z granules, SIMR foci, and Mutator foci-multiple of which form via phase separation and exhibit liquid-like properties. The functions of individual proteins within germ granules are well-studied, but the spatial organization, physical interaction, and coordination of biomolecule exchange between compartments within germ granule "nuage" is less understood. Here we find that key proteins are sufficient for compartment separation, and that the boundary between compartments can be reestablished after perturbation. Using super-resolution microscopy, we discover a toroidal P granule morphology which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization. Combined with findings that nuclear pores primarily interact with P granules, this nuage compa rtment organization has broad implications for the trajectory of an RNA as it exits the nucleus and enters small RNA pathway compartments. Furthermore, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Together, our work creates a more spatially and compositionally accurate model of C. elegans nuage which informs the conceptualization of RNA silencing through different germ granule compartments.