Identification of a novel colon adenocarcinoma cell targeting peptide using phage display library biopanning.
Babak BakhshinejadMajid SadeghizadehPublished in: Biotechnology and applied biochemistry (2022)
Phage display is well recognized as a promising high-throughput screening tool for the discovery of novel cancer-targeting peptides. Here, we screened a phage display library of 7-mer random peptides through in vitro biopanning to isolate peptide ligands binding to SW480 human colon adenocarcinoma cells. Three rounds of negative and positive selection caused a remarkable enrichment of colon cancer cell-binding phage clones with a significant enhancement of phage recovery efficiency (about 157-fold). A number of phage clones were picked out from the eluted phages of last selection round and sequenced. According to the results of cell binding assay and phage cell-based ELISA, one of the isolated peptides denoted as CCBP1 (with the sequence HAMRAQP) was indicated to have the highest binding efficiency, selectivity, and specificity toward colon cancer cells with no significant binding to control cells. Peptide competitive inhibition assay revealed that binding of the phage-displayed CCBP1 is competitively inhibited by the same free peptide, suggesting that CCBP1 specific binding to the target cell is independent of the phage context. Taken together, our findings provide support for the notion that CCBP1 binds specifically to colon cancer cells and might be a potential lead candidate for targeted delivery of imaging agents or therapeutic genes/drugs to colon tumors.