High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives.
Yuanyuan ZhuJiaxin MaPratteek DasSen WangZhong-Shuai WuPublished in: Small methods (2023)
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.