Efficient and Selective Interplay Revealed: CO2 Reduction to CO over ZrO2 by Light with Further Reduction to Methane over Ni0 by Heat Converted from Light.
Hongwei ZhangTakaomi ItoiTakehisa KonishiYasuo IzumiPublished in: Angewandte Chemie (International ed. in English) (2021)
The reaction mechanism of CO2 photoreduction into methane was elucidated by time-course monitoring of the mass chromatogram, in situ FTIR spectroscopy, and in situ extended X-ray absorption fine structure (EXAFS). Under 13 CO2 , H2 , and UV/Vis light, 13 CH4 was formed at a rate of 0.98 mmol h-1 gcat -1 using Ni (10 wt %)-ZrO2 that was effective at 96 kPa. Under UV/Vis light irradiation, the 13 CO2 exchange reaction and FTIR identified physisorbed/chemisorbed bicarbonate and the reduction because of charge separation in/on ZrO2 , followed by the transfer of formate and CO onto the Ni surface. EXAFS confirmed exclusive presence of Ni0 sites. Then, FTIR spectroscopy detected methyl species on Ni0 , which was reversibly heated to 394 K owing to the heat converted from light. With D2 O and H2 , the H/D ratio in the formed methane agreed with reactant H/D ratio. This study paves the way for using first row transition metals for solar fuel generation using only UV/Vis light.