Login / Signup

Rat Bone Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-494 Promoting Neurofilament Regeneration and Behavioral Function Recovery after Spinal Cord Injury.

Wei HuangMiaoman LinCunheng YangFumin WangMeng ZhangJunxiao GaoXiaobing Yu
Published in: Oxidative medicine and cellular longevity (2021)
Exosomes (Exo) exhibit numerous advantages (e.g., good encapsulation, high targeting efficiency, and easy to penetrate the blood-brain barrier to the central nervous system). Exosomes are recognized as prominent carriers of mRNAs, siRNAs, miRNAs, proteins, and other bioactive molecules. As confirmed by existing studies, miR-494 is important to regulate the occurrence, progression, and repair of spinal cord injury (SCI). We constructed miR-494-modified exosomes (Exo-miR-494). As indicated from related research in vitro and vivo, Exo-miR-494 is capable of effectively inhibiting the inflammatory response and neuronal apoptosis in the injured area, as well as upregulating various anti-inflammatory factors and miR-494 to protect neurons. Moreover, it can promote the regeneration of the neurofilament and improve the recovery of behavioral function of SCI rats.
Keyphrases