Login / Signup

Late gestation fetal hyperglucagonaemia impairs placental function and results in diminished fetal protein accretion and decreased fetal growth.

Sarah N CilvikStephanie R WesolowskiRuss V AnthonyLaura D BrownPaul J Rozance
Published in: The Journal of physiology (2021)
Fetal glucagon concentrations are elevated in the setting of placental insufficiency and fetal stress. Postnatal studies have demonstrated the importance of glucagon in amino acid metabolism, and limited fetal studies have suggested that glucagon inhibits umbilical uptake of certain amino acids. We hypothesized that chronic fetal hyperglucagonaemia would decrease amino acid transfer and increase amino acid oxidation by the fetus. Late gestation singleton fetal sheep received a direct intravenous infusion of glucagon (GCG; 5 or 50 ng/kg/min; n = 7 and 5, respectively) or a vehicle control (n = 10) for 8-10 days. Fetal and maternal nutrient concentrations, uterine and umbilical blood flows, fetal leucine flux, nutrient uptake rates, placental secretion of chorionic somatomammotropin (CSH), and targeted placental gene expression were measured. GCG fetuses had 13% lower fetal weight compared to controls (P = 0.0239) and >28% lower concentrations of 16 out of 21 amino acids (P < 0.02). Additionally, protein synthesis was 49% lower (P = 0.0005), and protein accretion was 92% lower in GCG fetuses (P = 0.0006). Uterine blood flow was 33% lower in ewes with GCG fetuses (P = 0.0154), while umbilical blood flow was similar. Fetal hyperglucagonaemia lowered uterine uptake of 10 amino acids by >48% (P < 0.05) and umbilical uptake of seven amino acids by >29% (P < 0.04). Placental secretion of CSH into maternal circulation was reduced by 80% compared to controls (P = 0.0080). This study demonstrates a negative effect of glucagon on fetal protein accretion and growth. It also demonstrates that glucagon, a hormone of fetal origin, negatively regulates maternal placental nutrient transport function, placental CSH production and uterine blood flow.
Keyphrases
  • amino acid
  • blood flow
  • gene expression
  • physical activity
  • gestational age
  • nitric oxide
  • low dose
  • dna methylation
  • body mass index
  • drug delivery