Different chromatin and DNA sequence characteristics define glucocorticoid receptor binding sites that are blocked or not blocked by coregulator Hic-5.
Brian H LeeMichael R StallcupPublished in: PloS one (2018)
The glucocorticoid receptor (GR) regulates genes in many physiological pathways by binding to enhancer and silencer elements of target genes, where it recruits coregulator proteins that remodel chromatin and regulate the assembly of transcription complexes. The coregulator Hydrogen peroxide-inducible clone 5 (Hic-5) is necessary for glucocorticoid (GC) regulation of one group of GR target genes, is irrelevant for a second group, and inhibits GR binding to a third gene set, thereby blocking their regulation by GC. Gene-specific characteristics that distinguish GR binding regions (GBR) at Hic-5 blocked genes from GBR at other GC-regulated genes are unknown. Here we show genome-wide that blocked GBR generally require CHD9 and BRM for GR occupancy in contrast to GBR that are not blocked by Hic-5. Hic-5 blocked GBR are enriched near Hic-5 blocked GR target genes but not near GR target genes that are not blocked by Hic-5. Furthermore blocked GBR are in a closed conformation prior to Hic-5 depletion, and require Hic-5 depletion and glucocorticoid treatment to create an open conformation necessary for GR occupancy. A transcription factor binding motif characteristic of the ETS family was enriched near blocked GBR and blocked genes but not near non-blocked GBR or non-blocked GR target genes. Thus, we identify specific differences in chromatin conformation, chromatin remodeler requirements, and local DNA sequence motifs that contribute to gene-specific actions of transcription factors and coregulators. These findings shed light on mechanisms that contribute to binding site selection by transcription factors, which vary in a cell type-specific manner.
Keyphrases
- genome wide
- transcription factor
- genome wide identification
- dna methylation
- dna binding
- copy number
- hydrogen peroxide
- bioinformatics analysis
- genome wide analysis
- dna damage
- gene expression
- molecular dynamics simulations
- magnetic resonance
- nitric oxide
- single molecule
- magnetic resonance imaging
- high resolution
- oxidative stress
- circulating tumor cells
- replacement therapy