A GC-Rich Prophage-Like Genomic Region of Mycoplasma bovirhinis HAZ141_2 Carries a Gene Cluster Encoding Resistance to Kanamycin and Neomycin.
Inna LysnyanskyIlya BorovokPublished in: Antimicrobial agents and chemotherapy (2021)
Recently, a complete genome sequence of Mycoplasma bovirhinis HAZ141_2 was published showing the presence of a 54-kB prophage-like region. Bioinformatic analysis revealed that this region has a more than 40% GC content and a chimeric organization with three structural elements-a prophage continuous region, a restriction-modification cassette, and a highly transmittable aadE-sat4-aphA-3 gene cluster found in both Gram-positive and Gram-negative bacteria. It is known that aadE confers resistance to streptomycin, sat4 governs resistance to streptothricin/nourseothricin, and aphA-3 is responsible for resistance to kanamycin and structurally related antibiotics. An aadE-like (aadE*) gene of strain HAZ141_2 encodes a 228-amino acid (aa) polypeptide whose carboxy-terminal domain (positions 44 to 206) is almost identical to that of a functional 302-aa AadE (positions 140 to 302). Transcription analysis of the aadE*-sat4-aphA-3 genes showed their cotranscription in M. bovirhinis HAZ141_2. Moreover, a common promoter for aadE*-sat4-aphA-3 was mapped upstream of aadE* using 5' rapid amplification of cDNA ends analysis. Determination of MICs to aminoglycosides and nourseothricin revealed that M. bovirhinis HAZ141_2 is highly resistant to kanamycin and neomycin (≥512 μg/ml). However, MICs to streptomycin (64 μg/ml) and nourseothricin (16 to 32 μg/ml) were similar to those identified in the prophageless M. bovirhinis type strain PG43 and Israeli field isolate 316981. We cloned the aadE*-sat4-aphA-3 genes into a low-copy-number vector and transferred them into antibiotic-sensitive Escherichia coli cells. While the obtained E. coli transformants were highly resistant to kanamycin, neomycin, and nourseothricin (MICs, ≥256 μg/ml), there were no changes in MICs to streptomycin, suggesting a functional defect of the aadE*.
Keyphrases
- copy number
- genome wide
- mitochondrial dna
- escherichia coli
- dna methylation
- genome wide identification
- transcription factor
- gene expression
- amino acid
- single cell
- systematic review
- pseudomonas aeruginosa
- mass spectrometry
- cell therapy
- oxidative stress
- signaling pathway
- bone marrow
- nucleic acid
- pi k akt
- cell cycle arrest