Physicomechanical performance and encapsulation efficiency of β-cyclodextrin loaded functional electrospun mats based on aliphatic polyesters and their blends.
Deepika SharmaBhabani K SatapathyPublished in: Journal of biomaterials science. Polymer edition (2021)
Designing complex-forming biodegradable and biocompatible electrospun mats (EMs) by incorporating β- cyclodextrin (β-CD) into polylactic acid (PLA)/poly(ε-caprolactone) (PCL) (70:30 w/w) blend based polyester matrix. The influence of β-CD loading on the morphological, thermal, and microstructural properties was investigated using scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. The studies revealed the presence of characteristic interactions between the polymer matrix and β-CD moieties. Further, the quasi-static mechanical properties of EMs were evaluated using a universal testing machine. An enhancement in modulus and strength was obtained for ∼ 2.5-5 phr of β-CD content and beyond ∼ 5 phr of β-CD content, the mechanical properties of EMs were observed to deteriorate. The contact angle studies indicated a decrease in hydrophobicity of PLA/PCL-based EMs with the increase in β-CD content. The swelling and weight loss studies in phosphate buffer saline (PBS) indicated a subsequent release of β-CD from the EMs. FT-IR and 1H NMR spectra elucidated the removal of curcumin from ethanol-water solutions and its simultaneous encapsulation in β-CD hydrophobic cavities (released) of fabricated EMs. Thus, the study demonstrates the development of aliphatic polyester-based biodegradable-functional EMs with tunable physico-mechanical properties for biomedical applications, facilitating encapsulation and rapid removal of waste hydrophobic ultrafine molecules from the system.