Quantitative Determination of Staphylococcus aureus Enterotoxins Types A to I and Variants in Dairy Food Products by Multiplex Immuno-LC-MS/MS.
Donatien LefebvreKevin Blanco-ValleCécile Feraudet-TarisseDéborah MerdaStéphanie SimonFrançois FenailleJacques-Antoine HennekinneYacine NiaFrançois BecherPublished in: Journal of agricultural and food chemistry (2021)
Staphylococcal enterotoxins (SEs) are responsible for frequent food poisoning outbreaks worldwide. Specific identification of SEs is crucial for confirmation of food poisoning, tracking of the incriminated foods or food ingredients, and removal from the food chain. Here, we report on a new food testing protocol addressing the challenge of low abundance of SEs in contaminated food and high sequence heterogeneity. Multiplex ability of targeted high-resolution mass spectrometry was succesfully applied to the simultaneous and quantitative determination of the eight most frequent SEs including sequence variants. In this aim, between three and eight proteotypic peptides of each SE were selected by carefully considering amino acid variations within each type, and sequence homology between types. Quantification of trace levels of SEs directly in food samples was reached by immunoaffinity enrichment and optimized analytical conditions. The assay was validated in dairy food products with a lower limit of quantification down to 0.1 ng/g (in milk), and quantification of SEs was successfully demonstrated in real-life samples collected during staphylococcal food poisoning outbreaks. Importantly, the ability of the method to detect diverse sequence variants was also illustrated. By enabling for the first time the simultaneous quantification of the eight most frequent SEs, the new mass spectrometry-based assay would facilitate the laboratory confirmation of positive samples in situation of food poisoning outbreaks.