Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries.
Yumin ZhangVenkatasubramanian ViswanathanPublished in: The journal of physical chemistry letters (2021)
Fluorinated linear organic solvents have great potential in improving the safety and lifetime of next-generation Li metal batteries. However, this group of solvents is underexplored. Here, we investigate the molecular and interfacial reactivity properties of seven partially and fully fluorinated linear carbonates designed based on conventional solvents. Using density functional theory, we find the highest occupied molecular orbital levels decrease with increasing substitution of the fluorinated functional groups, implying that fluorination, to a first approximation, improves the stability toward high voltage cathodes. On the basis of the simulated decomposition mechanisms and statistical analyses, we find that a fluorinated linear carbonate with partial fluorination at the methyl component is more accessible in terms of degradation and LiF nascence formation, leading to a potentially LiF-rich solid electrolyte interphase (SEI). The molecular design concepts and the computational techniques presented are transferable to ester and ether systems, facilitating the navigation in a large chemical design space.