Login / Signup

Endoscopic Hyperspectral Imaging System to Discriminate Tissue Characteristics in Tissue Phantom and Orthotopic Mouse Pancreatic Tumor Model.

Na Eun MunThi Kim Chi TranDong Hui ParkJin Hee ImJae Il ParkThanh Dat LeYoung Jin MoonSeong-Young KwonSu Woong Yoo
Published in: Bioengineering (Basel, Switzerland) (2024)
In this study, we developed an endoscopic hyperspectral imaging (eHSI) system and evaluated its performance in analyzing tissues within tissue phantoms and orthotopic mouse pancreatic tumor models. Our custom-built eHSI system incorporated a liquid crystal tunable filter. To assess its tissue discrimination capabilities, we acquired images of tissue phantoms, distinguishing between fat and muscle regions. The system underwent supervised training using labeled samples, and this classification model was then applied to other tissue phantom images for evaluation. In the tissue phantom experiment, the eHSI effectively differentiated muscle from fat and background tissues. The precision scores regarding fat tissue classification were 98.3% for the support vector machine, 97.7% for the neural network, and 96.0% with a light gradient-boosting machine algorithm, respectively. Furthermore, we applied the eHSI system to identify tumors within an orthotopic mouse pancreatic tumor model. The F-score of each pancreatic tumor-bearing model reached 73.1% for the KPC tumor model and 63.1% for the Pan02 tumor models. The refined imaging conditions and optimization of the fine-tuning of classification algorithms enhance the versatility and diagnostic efficacy of eHSI in biomedical applications.
Keyphrases
  • deep learning
  • machine learning
  • gene expression
  • high resolution
  • skeletal muscle
  • magnetic resonance imaging
  • escherichia coli
  • air pollution
  • quantum dots
  • image quality
  • energy transfer