Login / Signup

Intracellular Pathogen Detection Based on Dual-Recognition Units Constructed Fluorescence Resonance Energy Transfer Nanoprobe.

Fei FuYaqing ZhangLinyao LiHong WangQingjin LiXiaoqi TaoYang SongErqun Song
Published in: Analytical chemistry (2020)
The intracellular invasion and survival of a pathogen like Staphylococcus aureus (S. aureus) within host cells enable them to resist antibiotic treatment and colonize long-term in the host, which leads to a series of clinical issues. Rapid and specific detection of intracellular bacteria is important in diagnosis of infection and guiding antibiotic administration. Herein, this work reports a simple one-step fluorescence resonance energy transfer (FRET) platform-based strategy to achieve specific and rapid detection of S. aureus in specimens of phagocytic cells. The aptamer modified quantum dots (Aptamer-QDs) and antibiotic molecule of Teicoplanin functionalized-gold nanoparticles (Teico-AuNPs) dual-recognition units to S. aureus are employed as energy donor and acceptor, respectively. Based on the "off" to "on" signal readout mode, when in the presence of target S. aureus, the donor and acceptor are close to each other and bring high FRET efficiency, which is suitable for analysis of intracellular S. aureus. After it was incubated with the sample for 2 h, the as-prepared FRET sensor showed selectivity to the target S. aureus, and the changed fluorescence signal shows an obvious variation with increasing concentration of S. aureus in pure buffer. When the FRET strategy was further applied to assay intracellular S. aureus, there was an obvious fluorescence signal change obtained both by spectrum analysis and visual fluorescence microscope observation when the average number of S. aureus in one host cell (NS. aureus/cell) was as low as 1, which can be attributed to the high fluorescence quenching efficiency of about 41.3%. It could be envisioned that this FRET nanoprobe with high fluorescence quenching efficiency may provide a simple approach for the facile, selective, and rapid diagnosis of an intracellular bacterial infection.
Keyphrases