Login / Signup

Effect of strontium inclusion on the bioactivity of phosphate-based glasses.

Jamieson K ChristieN H de Leeuw
Published in: Journal of materials science (2017)
We have conducted first-principles and classical molecular dynamics simulations of various compositions of strontium-containing phosphate glasses, to understand how strontium incorporation will change the glasses' activity when implanted into the body (bioactivity). To perform the classical simulations, we have developed a new interatomic potential, which takes account of the polarizability of the oxygen ions. The Sr-O bond length is ∼2.44-2.49 Å, and the coordination number is 7.5-7.8. The Q n distribution and network connectivity were roughly constant for these compositions. Sr bonds to a similar number of phosphate chains as Ca does; based on our previous work (Christie et al. in J Phys Chem B 117:10652, 2013), this implies that SrO ↔ CaO substitution will barely change the dissolution rate of these glasses and that the bioactivity will remain essentially constant. Strontium could therefore be incorporated into phosphate glass for biomedical applications.
Keyphrases
  • molecular dynamics simulations
  • molecular docking
  • molecular dynamics
  • quantum dots
  • white matter
  • functional connectivity
  • climate change
  • monte carlo
  • network analysis