Selective Detection of Methomyl Pesticide by a Catalytic Chemosensing Assay.
Anxun ZhengCheng-Bin GongCheuk-Fai ChowPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
The catalytic chemosensing assay (CCA), a new indicator displacement assay, was developed for selective detection of methomyl, a highly toxic pesticide. Trimetallic complex {[FeII (dmbpy)(CN)4 ]-[PtII (DMSO)Cl]2 -[RuII (bpy)2 (CN)2 ]} (1; dmbpy=4,4'-dimethyl-2,2'-bipyridine, bpy=2,2'-bipyridine) was synthesized as a task-specific catalyst to initially reduce and degrade methomyl to CH3 SH/CH3 NH2 /CH3 CN/CO2 . The thus-produced CH3 SH interacts with the trimetallic complex to displace the cis-[RuII (bpy)2 (CN)2 ] luminophore for monitoring. Other pesticides, including organophosphates and similar carbamate pesticides, remained intact under the same catalytic conditions; a selective sensing signal is only activated when 1 recognizes methomyl. Furthermore, 1 can be applied to detect methomyl in real water samples. In the luminescent mode of the assay, the method detection limit (MDL) of 1 for methomyl (LD50 =17 mg kg-1 ) was 1.12 mg L-1 .