Tuning of Ultra-Thin Gold Films by Photoreduction.
Daniel Martínez-CercósBruno PaulilloJessica BarrantesJose Mendoza-CarreñoAgustin MihiTodd St ClairPrantik MazumderValerio PruneriPublished in: ACS applied materials & interfaces (2023)
Ultrathin metal films (UTMFs) are used in a wide range of applications, from transparent electrodes to infrared mirrors and metasurfaces. Due to their small thickness ( < 5 nm), the electrical and optical properties of UTMFs can be changed by external stimuli, for example, by applying an electric field through an ion gel. It is also known that oxidized thin films and nanostructures of Au can be reduced by irradiating with short-wavelength light. Here we show that the resistance, reflectance, and resonant optical response of Au UTMFs is changed significantly by ultraviolet light. More specifically, photoreduction and oxidation processes can be sequentially applied for continuous tuning, with observed modulation ranges for sheet resistance ( R s) and reflectance of more than 40% and 30%, respectively. The proposed method has the potential for achieving reconfigurable UTMF structures and trimming their response to specific working points, e.g., a predetermined resonance wavelength and amplitude. This is also important for large scale deployment of such surfaces as one can compensate material nonuniformity, morphological, and structural dimension errors occurring during fabrication.
Keyphrases
- high resolution
- reduced graphene oxide
- sensitive detection
- energy transfer
- light emitting
- room temperature
- carbon nanotubes
- photodynamic therapy
- optical coherence tomography
- patient safety
- visible light
- high speed
- mass spectrometry
- gold nanoparticles
- adverse drug
- human health
- emergency department
- quantum dots
- ionic liquid
- low density lipoprotein
- solid state
- low cost
- silver nanoparticles
- transition metal