Experimental and Computational Studies of Azo Dye-Modified Luminol Oligomers: Potential Application in Lithium Ion Sensing.
Neetika SinghElham S AazamUfana RiazPublished in: ACS omega (2021)
With a view to design novel conjugated oligomers via a facile technique for its possible application in sensors, the present work reports oligomerization of Bismarck Brown (BB) dye with luminol. The structure was confirmed via IR studies, while the electronic transitions were confirmed by UV-visible studies. Morphological studies were carried out via SEM. Computational studies were carried out using the DFT method with a B3LYP 6-311G(d) basis set to investigate the optimized geometry, band gap, and vibrational and electronic transitions data. The HOMO-LUMO energies showed significant reduction in the band gap upon increasing the content of BB dye. The computational IR and UV spectra were noticed to be in close agreement with the experimental results. Spectrophotometric determination of Li ion was attempted using lithium chloride and a lithium carbonate drug commonly used in the treatment of bipolar disorder. The detection limit was noticed to be as low as 5.1 × 10-6 M, which could be used to design a Li ion sensor.