Login / Signup

Outcome Prediction of Postanoxic Coma: A Comparison of Automated Electroencephalography Analysis Methods.

Stanley D T PhamHanneke M KeijzerBarry J RuijterAntje A SeeberErik ScholtenGea DrostWalter M van den BerghFrancois H M KornipsNorbert A FoudraineAlbertus BeishuizenMichiel J BlansJeannette HofmeijerMichel J A M van PuttenMarleen C Tjepkema-Cloostermans
Published in: Neurocritical care (2022)
A deep learning model outperformed logistic regression and random forest models for reliable, robust, EEG-based outcome prediction of comatose patients after cardiac arrest.
Keyphrases
  • cardiac arrest
  • deep learning
  • cardiopulmonary resuscitation
  • end stage renal disease
  • newly diagnosed
  • machine learning
  • ejection fraction
  • prognostic factors
  • high throughput
  • high density