TRILL: Orchestrating Modular Deep-Learning Workflows for Democratized, Scalable Protein Analysis and Engineering.
Zachary A MartinezRichard M MurrayMatt W ThomsonPublished in: bioRxiv : the preprint server for biology (2023)
Deep-learning models have been rapidly adopted by many fields, partly due to the deluge of data humanity has amassed. In particular, the petabases of biological sequencing data enable the unsupervised training of protein language models that learn the "language of life." However, due to their prohibitive size and complexity, contemporary deep-learning models are often unwieldy, especially for scientists with limited machine learning backgrounds. TRILL ( TR aining and I nference using the L anguage of L ife) is a platform for creative protein design and discovery. Leveraging several state-of-the-art models such as ESM-2, DiffDock, and RFDiffusion, TRILL allows researchers to generate novel proteins, predict 3-D structures, extract high-dimensional representations of proteins, functionally classify proteins and more. What sets TRILL apart is its ability to enable complex pipelines by chaining together models and effectively merging the capabilities of different models to achieve a sum greater than its individual parts. Whether using Google Colab with one GPU or a supercomputer with hundreds, TRILL allows scientists to effectively utilize models with millions to billions of parameters by using optimized training strategies such as ZeRO-Offload and distributed data parallel. Therefore, TRILL not only bridges the gap between complex deep-learning models and their practical application in the field of biology, but also simplifies the orchestration of these models into comprehensive workflows, democratizing access to powerful methods. Documentation: https://trill.readthedocs.io/en/latest/home.html .