Login / Signup

Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films.

Mengqi LiuShuang XiaWenjian WanJun QinHua LiChangying ZhaoLei BiCheng-Wei Qiu
Published in: Nature materials (2023)
The study of magneto-optical absorption has stimulated diverse energy-technology-related explorations, showing potential in breaking the current theoretical efficiency limits of energy devices compared with reciprocal counterparts. However, experimentally realizing strong infrared non-reciprocal absorption remains an open challenge, and existing proposals of non-reciprocal absorbers are restricted to a narrow working waveband. Here we observe highly asymmetric absorption spectra over a broad mid-infrared band (nearly 10 μm) using doped InAs multilayers with gradient epsilon-near-zero frequencies. We reveal that the magnetized epsilon-near-zero behaviours and material loss play important roles in achieving strongly non-reciprocal absorption under a moderate external magnetic field using a thin epsilon-near-zero film (<λ/40, λ is the wavelength). Our approach enables flexible control over the working frequencies and non-reciprocal bandwidths by designing magnetized InAs films with different doping concentrations. The proposed principles can also be generalized to other III-V semiconductors, magnetized metals, topological Weyl semimetals, magnetized zero-index metamaterials and metasurfaces.
Keyphrases
  • room temperature
  • quantum dots
  • high resolution
  • human health
  • single cell
  • genome wide
  • gold nanoparticles
  • health risk assessment
  • visible light