Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption.
Xue ZhangXuelei TianNa WuShanyu ZhaoYutian QinFei PanSheng-Ying YueXinyu MaJing QiaoWei XuWei LiuJiurong LiuMeiting ZhaoKostya Ken OstrikovZhihui ZengPublished in: Science advances (2024)
Designing a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (Zn x Cu 3-x ) (hexahydroxytriphenylene) 2 (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions. This approach for atomistic interlayer design allows for the finely control of the charge transport, band structure, and dielectric properties of the cMOF. As a result, Zn3Cu1-HHTP, with an optimal dielectric property, exhibits high-efficiency absorption in the gigahertz microwave range, achieving an ultra-strong reflection loss of -81.62 decibels. This study not only advances the understanding of the microstructure-function relationships in cMOFs but also offers a generic nanotechnology-based approach to achieving controllable interlayer spacing in MOFs for the targeted applications.