Effects of different heat exposure patterns (accumulated and transient) and schizophrenia hospitalizations: a time-series analysis on hourly temperature basis.
Chao TangYifu JiQingru LiZhenhai YaoJian ChengYangyang HeXiangguo LiuRubing PanQiannan WeiWeizhuo YiHong SuPublished in: Environmental science and pollution research international (2021)
Growing studies have shown that high temperature is a potential risk factor of schizophrenia occurrence. Therefore, elaborate analysis of different temperature exposure patterns, such as cumulative heat exposure within a time period and transient exposure at a particular time point, is of important public health significance. This study aims to utilize hourly temperature data to better capture the effects of cumulative and transient heat exposures on schizophrenia during the warm season in Hefei, China. We included the daily mean temperature and daily schizophrenia hospitalizations into the distributed lag non-linear model (DLNM) to simulate the exposure-response curve and determine the heat threshold (19.4 °C). We calculated and applied a novel indicator-daily excess hourly heat (DEHH)-to examine the effects of cumulative heat exposure over a day on schizophrenia hospitalizations. Temperature measurements at each time point were also incorporated in the DLNM as independent exposure indicators to analyze the impact of transient heat exposure on schizophrenia. Each increment of interquartile range (IQR) in DEHH was associated with elevated risk of schizophrenia hospitalizations from lag 1 (RR = 1.036, 95% confidence interval (CI): 1.016, 1.057) to lag 4 (RR = 1.025, 95% CI: 1.005, 1.046). Men and people over 40 years old were more susceptible to DEHH. Besides, we found a greater risk of heat-related schizophrenia hospitalizations between 0 a.m. and 6 a.m. This study revealed the adverse effects of accumulated and transient heat exposures on schizophrenia hospitalizations. Our findings need to be further tested in other regions with distinct regional features.