Amplification of endothelium-dependent vasodilatation in contracting human skeletal muscle: role of KIR channels.
Christopher M Jr HearonJennifer C RichardsMatthew L RacineGary J LuckasenDennis G LarsonFrank A DinennoPublished in: The Journal of physiology (2018)
The local vasodilatory response to muscle contraction is due in part to the activation of inwardly rectifying potassium (KIR ) channels. Evidence from animal models suggest that KIR channels function as 'amplifiers' of endothelium-dependent vasodilators. We tested the hypothesis that contracting muscle selectively amplifies endothelium-dependent vasodilatation via activation of KIR channels. We measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of ACh (endothelium-dependent dilator) during resting conditions, handgrip exercise (5% maximum voluntary contraction) or sodium nitroprusside (SNP; endothelium-independent dilator) which served as a high-flow control condition (n = 7, young healthy men and women). Trials were performed before and after blockade of KIR channels via infusion of barium chloride. Exercise augmented peak ACh-mediated vasodilatation (ΔFVC saline: 117 ± 14; exercise: 236 ± 21 ml min-1 (100 mmHg)-1 ; P < 0.05), whereas SNP did not impact ACh-mediated vasodilatation. Blockade of KIR channels attenuated the exercise-induced augmentation of ACh. In eight additional subjects, SNP was administered as the experimental dilator. In contrast to ACh, exercise did not alter SNP-mediated vasodilatation (ΔFVC saline: 158 ± 35; exercise: 121 ± 22 ml min-1 (100 mmHg)-1 ; n.s.). Finally, in a subset of six subjects, direct pharmacological activation of KIR channels in quiescent muscle via infusion of KCl amplified peak ACh-mediated vasodilatation (ΔFVC saline: 97 ± 15, KCl: 142 ± 16 ml min-1 (100 mmHg)-1 ; respectively; P < 0.05). These findings indicate that skeletal muscle contractions selectively amplify endothelium-dependent vasodilatory signalling via activation of KIR channels, and this may be an important mechanism contributing to the normal vasodilatory response to exercise in humans.