Login / Signup

Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells.

Natalia Sanz Del OlmoMarcin HolotaSylwia MichlewskaRafael GómezPaula OrtegaMaksim IonovFrancisco Javier de La MataMaria Bryszewska
Published in: Pharmaceutics (2020)
Cancer treatment with small interfering RNA (siRNA) is one of the most promising new strategies; however, transfection systems that increase its bioavailability and ensure its delivery to the target cell are necessary. Transfection systems may be just vehicular or could contain fragments with anticancer activity that achieves a synergistic effect with siRNA. Cationic carbosilane dendrimers have proved to be powerful tools as non-viral vectors for siRNA in cancer treatment, and their activity might be potentiated by the inclusion of metallic complexes in its dendritic structure. We have herein explored the interaction between Schiff-base carbosilane copper (II) metallodendrimers, and pro-apoptotic siRNAs. The nanocomplexes formed by metallodendrimers and different siRNA have been examined for their zeta potential and size, and by transmission electron microscopy, fluorescence polarisation, circular dichroism, and electrophoresis. The internalisation of dendriplexes has been estimated by flow cytometry and confocal microscopy in a human breast cancer cell line (MCF-7), following the ability of these metallodendrimers to deliver the siRNA into the cell. Finally, in vitro cell viability experiments have indicated effective interactions between Cu (II) dendrimers and pro-apoptotic siRNAs: Mcl-1 and Bcl-2 in breast cancer cells. Combination of the first-generation derivatives with chloride counterions and with siRNA increases the anticancer activity of the dendriplex constructs and makes them a promising non-viral vector.
Keyphrases