Login / Signup

Gas Adsorption, Proton Conductivity, and Sensing Potential of a Nanoporous Gadolinium Coordination Framework.

Supaphorn ThammakanPattaraphon RodlamulNatthawat SemakulNobuto YoshinariTakumi KonnoAthipong NgamjarurojanaApinpus Rujiwatra
Published in: Inorganic chemistry (2020)
The new nanoporous framework [Gd4(di-nitro-BPDC)4(NO2)3(OH)(H2O)5]·(solvent) (I; di-nitro-BPDC2- = 2,2'-dinitrobiphenyl-4,4'-dicarboxylate) has been designed and synthesized through a simple one-pot reaction. In addition to its exceptional thermal and water stabilities, I exhibited multifunctional properties. A sudden CO2 uptake to a maximum of 4.51 mmol g-1 (195 K and 1 bar) with notable selectivity over O2 and N2 (CO2/O2 = 39 at 195 K and 0.10 bar, CO2/N2 = 46 at 195 K and 0.10 bar) and an isosteric adsorption enthalpy of 20.7(4) kJ mol-1 have been revealed. Depending on the temperature and humidity, I also showed distinguished superprotonic conductivities with a maximum value and activation energy of 6.17 × 10-2 S cm-1 (55 °C, 99 RH%, and 1 V AC voltage) and 0.43 eV, respectively. With respect to the linear dependence of conductivities on both temperature (25-55 °C at 99 RH%) and humidity (55-99 RH% at 25 °C), the potential of I in temperature and humidity sensing was evaluated, disclosing an excellent sensing resolution and exceptional accuracy, precision, and repeatability for the measurements.
Keyphrases