Login / Signup

Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction.

Li SongTao WangYiou MaHairong XueHu GuoXiaoli FanWei XiaHao GongJianping He
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
The scarcity, high cost, and poor stability of precious metal-based electrocatalysts have stimulated the development of novel non-precious metal catalysts for the oxygen reduction reaction (ORR) for use in fuel cells and metal-air batteries. Here, we fabricated in situ a hybrid material (Co-W-C/N) with functional species (tungsten carbide and cobalt nanoparticles) encapsulated in an N-doped porous carbon framework, through a facile multi-constituent co-assembly method combined with subsequent annealing treatment. The unique structure favors the anchoring active nanoparticles and facilitates mass transfer steps. The homogenously distributed carbide nanoparticles and adjacent Co-N-C sites lead to the electrocatalytic synergism for the ORR. The existence of Co and W can promote the graphitization of the carbon matrix. Benefiting from its structural and material superiority, the Co-W-C/N electrocatalyst exhibits excellent electrocatalytic activity (with a half-wave potential of 0.774 V vs. reversible hydrogen electrode (RHE)), high stability (96.3 % of the initial current remaining after 9000 s of continuous operation), and good immunity against methanol in alkaline media.
Keyphrases