An emergent mechanism for internally gated task switching in modular recurrent neural networks with multiple cell types.
Yue LiuXiao-Jing WangPublished in: bioRxiv : the preprint server for biology (2023)
Behavioral flexibility relies on the brain's ability to switch rapidly between multiple tasks, even when the task rule is not explicitly cued but must be inferred through trial and error. The underlying neural circuit mechanism remains poorly understood. We investigated recurrent neural networks (RNNs) trained to perform an analog of the classic Wisconsin Card Sorting Test. The networks consist of two modules responsible for rule representation and sensorimotor mapping, respectively, where each module is comprised of a circuit with excitatory neurons and three major types of inhibitory neurons. We found that rule representation by self-sustained persistent activity across trials, error monitoring and gated sensorimotor mapping emerged from training. Systematic dissection of trained RNNs revealed a detailed circuit mechanism. The networks' dynamical trajectories for different rules reside in separate subspaces of population activity; they become virtually identical and performance was reduced to chance level when dendritetargeting somatostatin-expressing interneurons were silenced, demonstrating that rule-based gating critically depends on the disinhibitory motif.