Elevated glucose increases genomic instability by inhibiting nucleotide excision repair.
Alexandra K CimineraSarah C ShuckJohn S TerminiPublished in: Life science alliance (2021)
We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N 2 -(1-carboxyethyl)-2'-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α-mediated transcription of NER genes via enhanced 2-ketoglutarate-dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
Keyphrases
- dna repair
- dna damage response
- dna damage
- induced apoptosis
- gene expression
- blood glucose
- genome wide
- copy number
- cell cycle arrest
- circulating tumor
- dna methylation
- signaling pathway
- transcription factor
- single molecule
- genome wide identification
- cell free
- bioinformatics analysis
- cell death
- oxidative stress
- high throughput
- blood pressure
- nucleic acid
- type diabetes
- stress induced
- adipose tissue
- risk assessment
- diabetic rats
- insulin resistance
- binding protein
- skeletal muscle
- protein protein
- small molecule