Login / Signup

Planar Disk μ-Aptasensors by Monolayer Assembly in a Dissolving Microdroplet.

Vanshika GuptaAnhThu PhamJeffrey E Dick
Published in: Analytical chemistry (2024)
Electrochemical aptamer-based sensors provide a highly modular platform for real-time monitoring of small molecules. Their ability to selectively recognize target molecules in complex environments like biological fluids makes them an attractive technology for the analysis of micro- and nanoscale systems. The signal-to-noise of the measurement depends on the electroactive surface (i.e., how many aptamers one can place), which has previously precluded miniaturization of aptamer-based sensors to planar disk ultramicroelectrodes ( r ∼ 5-10 μm). Here, we employ a concentration enrichment strategy based on the active dissolution of an aqueous, aptamer-containing microdroplet on an ultramicroelectrode submerged in an organic continuous phase (1,2-dichloroethane). We show consistent voltammetric signal increase as a function of droplet lifetime, indicating the successful immobalization of the thiol-terminated aminoglycoside aptamers to the electrode surface. We observe a diagnostic methylene blue peak and 10-fold increase in current magnitude as compared to bare microelectrodes. We report robust sensor behavior with a linear dynamic range extending from milli- to micromolar concentrations of kanamycin in buffer. This research offers a successful method for optimized electrochemical aptamer-based sensor fabrication and miniaturization on ultramicroelectrodes without the need for electrode surface area enhancement.
Keyphrases