Login / Signup

Assessment of genotype-trait interaction in maize (Zea mays L.) hybrids using GGT biplot analysis.

Seyed Habib ShojaeiKhodadad MostafaviMahmoud KhosroshahliMohammad Reza BihamtaHossein Ramshini
Published in: Food science & nutrition (2020)
In order to investigate the interaction of genotype × trait and relationships among agronomic traits on 12 maize hybrids, an experiment was conducted in a randomized complete block design (RCBD) with three replicates in four regions of Karaj, Birjand, Shiraz, and Arak. Results of analysis of variance indicated that most of the genotypes were significantly different in terms of agronomic traits. Mean comparison by Duncan's method showed that KSC705 genotype was more favorable than other genotypes in all studied regions. SC604 genotype in Birjand and Karaj regions and KSC707 genotype in Shiraz region have higher rank than other genotypes. Correlation analysis was used to investigate the relationships between traits. In most of the studied regions, traits of number of grains in row and number of rows per ear were positively and significantly correlated with grain width and grain weight with grain yield. Graphical analysis was used to further investigate. Genotypes-trait interaction graph explained 59.27%, 61.22%, 59.17%, and 61.95% of total variance in Karaj, Birjand, Shiraz, and Arak, respectively. Based on the multivariate graph, KSC705, KSC706, and SC647 genotypes were identified as superior genotypes in all studied regions and KSC400 genotype did not show much response to change in traits. Correlation between grain width and number of rows in ear, plant height and grain length, one thousand grain weight and grain thickness, and ear diameter with number of grains in row was positive and significant. The results of classification graph of genotypes also divided the cultivars in to three groups as follows: KSC703, KSC400, and KSC706 genotypes in the first group; DC370, SC604, and SC301 in the second group; and KSC260, KSC704, KSC707, and SC301 in the third group.
Keyphrases
  • genome wide
  • body mass index
  • physical activity
  • dna methylation
  • machine learning
  • convolutional neural network
  • weight loss
  • dendritic cells
  • weight gain
  • gene expression
  • data analysis
  • body weight