Login / Signup

Voltage controlled Néel vector rotation in zero magnetic field.

Ather MahmoodWill EchtenkampMike StreetJun-Lei WangShi CaoTakashi KomesuPeter A DowbenPratyush BuragohainHaidong LuAlexei GruvermanArun ParthasarathyShaloo RakhejaChristian Binek
Published in: Nature communications (2021)
Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.
Keyphrases
  • single molecule
  • high resolution
  • room temperature
  • high temperature
  • drug delivery
  • gene expression
  • high throughput
  • cancer therapy
  • genome wide
  • gold nanoparticles
  • dna methylation
  • electron microscopy