Login / Signup

Orthogonal Chirp Coded Excitation in a Capacitive Micro-machined Ultrasonic Transducer Array for Ultrasound Imaging: A Feasibility Study.

Bae Hyung KimSeungheun LeeKang-Sik Kim
Published in: Sensors (Basel, Switzerland) (2019)
It has been reported that the frequency bandwidth of capacitive micro-machined ultrasonic transducers (CMUTs) is relatively broader than that of other ceramic-based conventional ultrasonic transducers. In this paper, a feasibility study for orthogonal chirp coded excitation to efficiently make use of the wide bandwidth characteristic of CMUT array is presented. The experimental result shows that the two orthogonal chirps mixed and simultaneously fired in CMUT array can be perfectly separated in decoding process of the received echo signal without sacrificing the frequency bandwidth each chirp. The experimental study also shows that frequency band-divided orthogonal chirps are successfully compressed to two short pulses having the -6 dB axial beam-width of 0.26- and 0.31-micro second for high frequency and low frequency chirp, respectively. B-mode image simulations are performed using Field II to estimate the improvement of image quality assuming that the orthogonal chirps designed for the experiments are used for simultaneous transmission multiple-zone focusing (STMF) technique. The simulation results show that the STMF technique used in CMUT array can improve the lateral resolution up to 77.1% and the contrast resolution up to 74.7%, respectively. It is shown that the penetration depth also increases by more than 3 cm.
Keyphrases