Login / Signup

Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming.

Max L SterlingRuben TeunisseBernhard Englitz
Published in: eLife (2023)
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, HyVL, that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8mm, 91% assigned) in localizing USVs, ~3x better than other systems, approaching the physical limits (mouse snout ~ 10mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Keyphrases
  • mental health
  • high resolution
  • healthcare
  • machine learning
  • congenital heart disease
  • deep learning