Collective States in Molecular Monolayers on 2D Materials.
Sabrina JuergensenMoritz KessensCharlotte Berrezueta-PalaciosNikolai SeverinSumaya IflandJürgen P RabeNiclas S MuellerStephanie ReichPublished in: ACS nano (2023)
Collective excited states form in organic two-dimensional layers through Coulomb coupling of the molecular transition dipole moments. They manifest as characteristic strong and narrow peaks in the excitation and emission spectra that are shifted to lower energies compared with the monomer transition. We study experimentally and theoretically how robust the collective states are against homogeneous and inhomogeneous broadening, as well as spatial disorder that occurs in real molecular monolayers. Using a microscopic model for a two-dimensional dipole lattice in real space, we calculate the properties of collective states and their extinction spectra. We find that the collective states persist even for 1-10% random variation in the molecular position and in the transition frequency, with a peak position and integrated intensity similar to those for the perfectly ordered system. We measured the optical response of a monolayer of the perylene derivative MePTCDI on two-dimensional materials. On the wide-band-gap insulator hexagonal boron nitride, it shows strong emission from the collective state with a line width that is dominated by the inhomogeneous broadening of the molecular state. When the semimetal graphene is used as a substrate, however, the luminescence is completely quenched. By combining optical absorption, luminescence, and multiwavelength Raman scattering, we verify that the MePTCDI molecules form very similar collective monolayer states on hexagonal boron nitride and graphene substrates, but on graphene the line width is dominated by nonradiative excitation transfer from the molecules to the substrate. Our study highlights the transition from the localized molecular state of the monomer to a delocalized collective state in the two-dimensional molecular lattice that is entirely based on Coulomb coupling between optically active excitations of the electrons and molecular vibrations. The excellent properties of organic monolayers make them promising candidates for components of soft-matter optoelectronic devices.