Login / Signup

Reactivity of a Molecular Calcium Hydride Cation ([CaH]+) Supported by an NNNN Macrocycle.

Danny SchuhknechtThomas P SpaniolYan YangLaurent MaronJun Okuda
Published in: Inorganic chemistry (2020)
The hydride ligand in the cationic calcium hydride supported by a NNNN-type macrocycle, [(Me4TACD)2Ca2(μ-H)2(THF)][BAr4]2 (1; Me4TACD = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane; THF = tetrahydrofuran; BAr4 = B(C6H3-3,5-Me2)4), shows, in addition to its Brönsted basicity toward weak acids, a pronounced nucleophilicity resulting in nucleophilic substitution or insertion (addition) at a silicon or sp2 carbon center. Terminal acetylenes RC≡CH (R = SiMe3, cyclopropyl) as well as 1,4-diphenylbutadiene were deprotonated by 1 to give dinuclear complexes [(Me4TACD)2Ca2(μ-C≡CR)2][BAr4]2 (2a, R = SiMe3; 2b, R = cyclopropyl) and [(Me4TACD)2Ca2(μ2-η4-1,4-Ph2C4H2)][BAr4]2 (3) with H2 evolution. The addition reaction with BH3(THF) gave a tetrahydridoborate complex, [(Me4TACD)Ca(BH4)(THF)2][BAr4] (4), with κ2-H2BH2 coordination in the solid state, suggesting a pronounced Lewis acidic calcium center. The behavior resulting from both Lewis acidity and hydricity becomes apparent in the nucleophilic substitution of fluorobenzene by 1 to give benzene and the dimeric fluoride complex [(Me4TACD)2Ca2(μ-F)2(THF)][BAr4]2·2.5THF (5). Analogous nucleophilic substitution reaction is observed for heterofunctionalized organosilanes XSiR3 [X = I, N(SiHMe2)2, N3; R = Me3 or HMe2], which resulted in the formation of calcium complexes [(Me4TACD)Ca(X)(THF)n][BAr4] (6-8) containing an X ligand along with hydrosilane HSiR3. An insertion reaction by 1 was observed with CO2 and CO to give dinuclear formato complex [(Me4TACD)2Ca2(μ-OCHO)2][BAr4]2 (9) and cis-enediolato complex [(Me4TACD)2Ca2(μ-OCH═CHO)][BAr4]2·3.5THF (10), respectively. The latter is believed to have been formed as a result of the dimerization of an initially generated formyl or oxymethylene complex, [(Me4TACD)Ca(OCH)]+.
Keyphrases
  • protein kinase
  • ionic liquid
  • solid state
  • magnetic resonance imaging
  • diffusion weighted imaging