Corticosterone mediates a growth-survival tradeoff for an amphibian exposed to increased salinity.
Brian J TornabeneBlake R HossackErica J CrespiCreagh W BreunerPublished in: Journal of experimental zoology. Part A, Ecological and integrative physiology (2021)
Life-history tradeoffs are common across taxa, but growth-survival tradeoffs-usually enhancing survival at a cost to growth-are less frequently investigated. Increased salinity (NaCl) is a prevalent anthropogenic disturbance that may cause a growth-survival tradeoff for larval amphibians. Although physiological mechanisms mediating tradeoffs are seldom investigated, hormones are prime candidates. Corticosterone (CORT) is a steroid hormone that independently influences survival and growth and may provide mechanistic insight into growth-survival tradeoffs. We conducted a 24-day experiment to test effects of salinity (<32-4000 mg/L) on growth, development, survival, CORT responses, and tradeoffs among traits of larval Northern Leopard Frogs (Rana pipiens). We also experimentally suppressed CORT signaling to determine whether CORT signaling mediates effects of salinity and a growth-survival tradeoff. Increased salinity reduced survival, growth, and development. Suppressing CORT signaling in conjunction with salinity reduced survival further but also attenuated the negative effects of salinity on growth, development, and water content. CORT of control larvae increased or was stable with growth and development but decreased with growth and development for those exposed to salinity. Therefore, salinity dysregulated CORT physiology. Across all treatments, larvae that survived had higher CORT than larvae that died. By manipulating CORT signaling, we provide strong evidence that CORT physiology mediates the outcome of a growth-survival tradeoff and enhances survival. To our knowledge, this is the first study to concomitantly measure tradeoffs between growth and survival and experimentally link these changes to CORT physiology. Identifying mechanistic links between stressors and fitness-related outcomes is critical to enhance our understanding of tradeoffs.