Enhancing Gene Transfection Efficiency of Star-Shaped Poly(β-amino ester)s via "Top-down" Hydrolysis.
Chenfei WangFeifei WangYuxing ZhengTao BoYitong ZhaoHaiyang YongZhili LiWeiyi XuQiang ZhaoDezhong ZhouPublished in: ACS macro letters (2024)
Gene therapy has emerged as a potent tool for treating a wide range of hereditary and acquired disorders. However, the development of high-performance nonviral gene delivery vectors remains a significant challenge. Here we report the development of a new type of star-shaped poly(β-amino ester) (SPAE) through a "top-down" hydrolysis approach and demonstrate its exceptional DNA transfection efficiency and safety profiles. Two SPAEs with different monomer combinations are first synthesized using an "arm first" strategy and then hydrolyzed sequentially to produce h-SPAEs with varied chemical compositions and molecular weights. Results demonstrate that hydrolysis significantly influences the physiological characteristics of the resulting h-SPAEs and h-SPAE/DNA polyplexes. Dependent on the chemical composition, h-SPAEs with low to moderate hydrolysis degrees exhibit superior gene transfection efficiency and cell viability across various cell types. Notably, the leading candidate, h-SPAE-1-5h, achieves up to 88.8% gene transfection efficiency, which was 154-257% higher compared to SPAE-1. This study not only establishes an easy-to-operate "top-down" approach for reshaping the topological structure and chemical composition of SPAEs, but also identifies promising candidates for effective gene transfection. This strategy can be applied to other cationic polymers to enhance their gene transfection performance.