Login / Signup

Operando Infrared Spectroscopy Reveals the Dynamic Nature of Semiconductor-Electrolyte Interface in Multinary Metal Oxide Photoelectrodes.

Anirudh VenugopalRecep KasKayeu HauWilson A Smith
Published in: Journal of the American Chemical Society (2021)
Detailed knowledge about the semiconductor/electrolyte interface in photoelectrochemical (PEC) systems has been lacking because of the inherent difficulty of studying such interfaces, especially during operation. Current understandings of these interfaces are mostly from the extrapolation of ex situ data or from modeling approaches. Hence, there is a need for operando techniques to study such interfaces to develop a better understanding of PEC systems. Here, we use operando photoelectrochemical attenuated total reflection Fourier transform infrared (PEC-ATR-FTIR) spectroscopy to study the metal oxide/electrolyte interface, choosing BiVO4 as a model photoanode. We demonstrate that preferential dissolution of vanadium occurs from the BiVO4/water interface, upon illumination in open-circuit conditions, while both bismuth and vanadium dissolution occurs when an anodic potential is applied under illumination. This dynamic dissolution alters the surface Bi:V ratio over time, which subsequently alters the band bending in the space charge region. This further impacts the overall PEC performance of the photoelectrode, at a time scale very relevant for most lab-scale studies, and therefore has serious implications on the performance analysis and fundamental studies performed on this and other similar photoelectrodes.
Keyphrases
  • visible light
  • ionic liquid
  • healthcare
  • quantum dots
  • solid state
  • room temperature
  • minimally invasive
  • sensitive detection
  • ion batteries
  • climate change
  • mass spectrometry
  • single molecule