Login / Signup

Effect of two (short-term) storage methods on load to failure testing of murine bone tissue.

Thomas Manfred TiefenböckStephan PayrOlga BajenovThomas KochMicha KomjatiKambiz Sarahrudi
Published in: Scientific reports (2019)
Since mechanical testing of bone quality is often delayed following euthanasia, the method of bone storage is of high importance in animal studies. Different storage methods may cause a change in the properties of bone tissue during mechanical testing. Therefore, the aim of this study was to investigate the biomechanical effects of two different fixation methods for bone tissue. We hypothesized that there is a difference between the load to failure values between the two groups. The tibias of fifteen 18-week-old female C57BL/6 mice were harvested and randomly allocated to three different groups with varying storage methods: (1) frozen at -80 °C, (2) paraformaldehyde working solution, and (3) native group. A storage time of two weeks prior to testing was chosen for groups 1 and 2. In group 3, referred to as the "native group", bones were immediately tested after the harvesting procedure. The comparison of the mean load to failure of all 3 groups (group 1: 28.7 N ± 6.1 N, group 2: 23.8 N ± 3.8 N and group 3: 23.7 N ± 5.7 N) did not reveal a significant difference. There was also no difference in strength or stiffness. The findings of the present study demonstrate that the two most common storage methods, do not have an influence on the biomechanical properties of murine bone over a two week period.
Keyphrases
  • bone mineral density
  • soft tissue
  • bone loss
  • bone regeneration
  • gene expression
  • insulin resistance
  • single cell
  • energy transfer
  • clinical evaluation