The Importance of Bulk Viscoelastic Properties in "Self-Healing" of Acrylate-Based Copolymer Materials.
Yuqi ZhaoHanshu WuRongguan YinKrzysztof MatyjaszewskiMichael R BockstallerPublished in: ACS macro letters (2023)
"Self-healing" has emerged as a concept to increase the functional stability and durability of polymer materials in applications and thus to benefit the sustainability of polymer-based technologies. Recently, van der Waals (vdW)-driven "self-healing" of sequence-controlled acrylate-based copolymers due to "key-and-lock"- or "ring-and-lock"-type interactions has generated considerable interest as a viable route toward engineering polymers with "self-healing" ability. This contribution systematically evaluates the time, temperature, and composition dependence of the mechanical recovery of acrylate-based copolymer and homopolymer systems subject to cut-and-adhere testing. "Self-healing" in n -butyl acrylate/methyl methacrylate (BA/MMA)- or n -butyl acrylate/styrene (BA/Sty)-based copolymers with varying composition and sequence is found to correlate with the bulk viscoelastic properties of materials and to follow a similar trend as other tested acrylate-based homo- and copolymers. This suggests that "self-healing" in this class of materials is more related to the chain dynamics of bulk materials rather than composition- or sequence-dependent specific interactions.