Coating of upconversion nanoparticles with silica nanoshells of 5-250 nm thickness.
Cynthia KembuanMaysoon SalehBastian RühleUte Resch-GengerChristina GrafPublished in: Beilstein journal of nanotechnology (2019)
A concept for the growth of silica shells with a thickness of 5-250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5-11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core-shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below -40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems.