Login / Signup

X-ray structure and mechanism of ZgHAD, a l-2-haloacid dehalogenase from the marine Flavobacterium Zobellia galactanivorans.

Eugénie GrigorianThomas RoretMirjam CzjzekCatherine LeblancLudovic Delage
Published in: Protein science : a publication of the Protein Society (2023)
Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l-2-haloacid dehalogenase (l-2-HAD) from the marine Bacteroidetes Zobellia galactanivorans Dsij T (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l-2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l-2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l-2-HAD.
Keyphrases
  • amino acid
  • high resolution
  • crystal structure
  • molecular dynamics
  • heavy metals
  • magnetic resonance imaging
  • magnetic resonance
  • computed tomography
  • small molecule
  • structural basis
  • solid state