Login / Signup

Seasonal and spatial variation in photosynthetic response of the kelp Ecklonia radiata across a turbidity gradient.

Caitlin O BlainNick T Shears
Published in: Photosynthesis research (2019)
Understanding the photoacclimation response of macroalgae across broad spatial and temporal scales is necessary for predicting their vulnerability to environmental changes and quantifying their contribution to coastal primary production. This study investigated how the photosynthesis-irradiance response and photosynthetic pigment content of the kelp Ecklonia radiata varies both spatially and seasonally among seven sites located across a turbidity gradient in the Hauraki Gulf, north-eastern New Zealand. Photosynthesis-irradiance curves were derived under laboratory conditions for whole adult E. radiata using photorespirometry chambers. Lab-derived photosynthesis-irradiance curves in summer were also compared with in situ measurements made on kelp at each of the seven study sites. Photosynthetic parameters and pigments showed clear seasonal patterns across all sites as demonstrated by higher photosynthetic pigment levels and photosynthetic efficiency occurring in autumn and winter, and higher maximum rates of photosynthesis and respiration occurring in summer. Lamina biomass was similar across sites, yet thalli exhibited a clear photokinetic response to increasing turbidity. At turbid sites photosynthetic pigment levels and photosynthetic efficiency was higher, and respiration and saturation and compensation irradiances lower, compared to high-light sites. The results presented here further our understanding of low-light acclimation strategies in kelp and highlight the degree of seasonality in photosynthetic parameters. Though E. radiata demonstrates a clear capacity to photoacclimate to a degrading light environment, further research is needed to investigate the extent to which the observed acclimation can offset the likely negative effects of increasing turbidity on kelp forest primary production.
Keyphrases
  • climate change
  • heat stress
  • heavy metals
  • human health
  • mass spectrometry
  • young adults
  • single molecule