Login / Signup

Microparticle-Assisted Precipitation Screening Method for Robust Drug Target Identification.

Jiawen LyuChengfei RuanXiaolei ZhangYan WangKejia LiMingliang Ye
Published in: Analytical chemistry (2020)
While thermal proteome profiling (TPP) shines in the field of drug target screening by analyzing the soluble fraction of the proteome samples treated at high temperature, the counterpart, the insoluble precipitate, has been overlooked for a long time. The analysis of the precipitate is hampered by the inefficient sample processing procedure. Herein, we propose a novel method, termed microparticle-assisted precipitation screening (MAPS), for drug target identification. The MAPS method exploits the principle that drug-bound proteins will be more resistant to thermal unfolding similar to the classic TPP method, but the process of protein precipitation is assisted by microparticles. Upon heating, proteins unfold and aggregate on the surface of the microparticles. The introduction of a microparticle simplifies the whole sample preparation workflow. The proteins that precipitate on the microparticles are subjected to washing, alkylation, and digestion. The whole sample preparation is processed conveniently on the surface of the microparticles without any transfer. With the assistance of microparticles, sample loss is minimized. The MAPS method is compatible with minute amounts of initial proteins. MAPS was applied to screen the targets of several well-studied drugs and the known target proteins were successfully identified with high confidence and specificity. To investigate the specificity of the method, MAPS was applied to screen the targets of the pan-kinase inhibitor, staurosporine, and 32 protein kinases (specificity of 80%) were identified using only 20 μg of initial proteins of each sample. MAPS is an unbiased robust method for drug target screening, filling the vacancy of stability-based target screening using a precipitate.
Keyphrases
  • emergency department
  • adverse drug
  • mass spectrometry
  • minimally invasive
  • single cell
  • anaerobic digestion
  • protein protein
  • water soluble