Login / Signup

APC/CFzr regulates cardiac and myoblast cell numbers, and plays a crucial role during myoblast fusion.

Maik DrechslerHeiko MeyerAriane C WilmesAchim Paululat
Published in: Journal of cell science (2018)
Somatic muscles are formed by the iterative fusion of myoblasts into muscle fibres. This process is driven by the recurrent recruitment of proteins to the cell membrane to induce F-actin nucleation at the fusion site. Although several proteins involved in myoblast fusion have been identified, knowledge about their subcellular regulation is rather elusive. We identified the anaphase-promoting complex (APC/C) adaptor Fizzy related (Fzr) as an essential regulator of heart and muscle development. We show that APC/CFzr regulates the fusion of myoblasts as well as the mitotic exit of pericardial cells, cardioblasts and myoblasts. Surprisingly, overproliferation is not causative for the observed fusion defects. Instead, fzr mutants exhibit smaller F-actin foci at the fusion site and display reduced membrane breakdown between adjacent myoblasts. We show that lack of APC/CFzr causes accumulation and mislocalisation of Rols and Duf, two proteins involved in the fusion process. Duf seems to serve as direct substrate of the APC/CFzr and its destruction depends on the presence of distinct degron sequences. These novel findings indicate that protein destruction and turnover constitute major events during myoblast fusion.
Keyphrases