Login / Signup

Structure-Activity Relationships of the Bacteriocin Bactofencin A and Its Interaction with the Bacterial Membrane.

François BédardIsmail FlissÉric Biron
Published in: ACS infectious diseases (2018)
The antimicrobial peptide bactofencin A is an unmodified non-pediocin-like bacteriocin that inhibits several clinically relevant pathogens, including Listeria monocytogenes and Staphylococcus aureus. Here we report the synthesis and structure-activity relationship studies of bactofencin A and novel analogues thereof. Synthetic bactofencin A was a potent inhibitor of L. monocytogenes (MIC = 8.0 μM) and S. aureus (MIC = 4.0 μM), similar to the bacteriocin produced naturally by Lactobacillus salivarius. Of particular interest is the fact that linear analogues lacking the disulfide bond found in bactofencin A were as potent and also active against several strains of methicillin-resistant S. aureus (MRSA) and one strain of vancomycin-resistant S. aureus (VRSA). Supported by the structure-activity relationship study, investigation of the interaction of bactofencin A with bacterial membrane by molecular dynamics simulations showed the importance of the positively charged N-terminal tail for peptide-membrane interaction. These results suggest that the C-terminal macrocycle is involved in target protein binding and bacterial growth inhibition.
Keyphrases