Login / Signup

Expression and light-dependent translocation of β-arrestin in the visual system of the terrestrial slug Limax valentianus.

Ryota MatsuoYuka TakatoriShun HamadaMitsumasa KoyanagiYuko Matsuo
Published in: The Journal of experimental biology (2017)
Vertebrates, cephalopods and arthropods are equipped with eyes that have the highest spatiotemporal resolution among the animal phyla. In parallel, only animals in these three phyla have visual arrestin specialized for the termination of visual signaling triggered by opsin, in addition to ubiquitously expressed β-arrestin that serves in terminating general G protein-coupled receptor signaling. Indeed, visual arrestin in Drosophila and rodents translocates to the opsin-rich subcellular region in response to light to reduce the overall sensitivity of photoreceptors in an illuminated environment (i.e. light adaptation). We thus hypothesized that, during evolution, visual arrestin has taken over the role of β-arrestin in those animals with eyes of high spatiotemporal resolution. If this is true, it is expected that β-arrestin plays a role similar to visual arrestin in those animals with low-resolution eyes. In the present study, we focused on the terrestrial mollusk Limax valentianus, a species related to cephalopods but that has only β-arrestin, and generated antibodies against β-arrestin. We found that β-arrestin is highly expressed in photosensory neurons, and translocates into the microvilli of the rhabdomere within 30 min in response to short wavelength light (400 nm), to which the Limax eye exhibits a robust response. These observations suggest that β-arrestin functions in the visual system of those animals that do not have visual arrestin. We also exploited anti-β-arrestin antibody to visualize the optic nerve projecting to the brain, and demonstrated its usefulness for tracing a visual ascending pathway.
Keyphrases
  • signaling pathway
  • spinal cord injury
  • brain injury
  • resting state
  • functional connectivity
  • white matter
  • drug induced
  • water quality