Vibration-induced depression in spinal loop excitability revisited.
Robin SouronStéphane BaudryGuillaume Y MilletThomas LapolePublished in: The Journal of physiology (2019)
The mechanisms that can explain the decreased spinal loop excitability in response to prolonged local vibration (LV), as assessed by the H-reflex, remain to be precisely determined. This study provides new insights into how prolonged Achilles' tendon LV (30 min, 100 Hz) acutely interacts with the spinal circuitry. The roles of presynaptic inhibition exerted on Ia afferents (Experiment A, n = 15), neurotransmitter release at the synapse level (Experiment B, n = 11) and motoneuron excitability (Experiment C, n = 11) were investigated in soleus. Modulation of presynaptic inhibition was assessed by conditioning the soleus H-reflex (tibial nerve electrical stimulation) with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation, HF) electrical stimulations. Potential vibration-induced changes in neurotransmitter depletion at the Ia afferent terminals was assessed through paired stimulations applied over the tibial nerve (HD). Intrinsic motoneuron excitability was assessed with thoracic motor evoked potentials (TMEPs) in response to electrical stimulation over the thoracic spine. Non-conditioned H-reflex was depressed by ∼60% after LV (P < 0.001), while D1 and HF H-reflexes increased by ∼75% after LV (P = 0.03 and 0.06, respectively). In Experiment B, HD remained unchanged after LV (P = 0.80). In Experiment C, TMEPs were reduced by ∼13% after LV (P = 0.01). Overall, presynaptic mechanisms do not seem to be involved in the depression of spinal excitability after LV. It rather seems to rely, at least in part, on a decrease in intrinsic motoneuron excitability. These results may have implications in reducing spinal hyper-excitability in spastic patients.
Keyphrases
- spinal cord
- transcranial direct current stimulation
- spinal cord injury
- high frequency
- total knee arthroplasty
- end stage renal disease
- peripheral nerve
- depressive symptoms
- chronic kidney disease
- working memory
- heart failure
- ejection fraction
- physical activity
- sleep quality
- high glucose
- patient reported outcomes
- risk assessment
- stress induced
- upper limb