Effect of COQ9 and STAT5A polymorphisms on reproductive performance in a Holstein cow herd in Mexico.
Néstor Gerardo Michel-RegaladoMiguel Ángel Ayala-ValdovinosJorge Galindo-GarcíaTheodor Duifhuis-RiveraDavid Román Sánchez-ChiprésMauricio Valencia-PosadasPublished in: Animal reproduction (2020)
Coenzyme Q9 (COQ9), a coenzyme Q (CoQ) precursor, is an essential component of the mitochondrial electron transport chain that drives adenosine triphosphate production. COQ9 polymorphism 18:25527339 is characterized by substitution of guanine (allele G) for adenine (allele A), which modifies the function of the protein encoded by the gene. In Holsteins, allele A has been associated with better reproductive performance in terms of the conception rate, number of services per conception (SPC) and days open (DO). The signal transducer and activator of transcription (STAT) protein is a transcription factor activated in the presence of cytokines and growth factors. STAT5A polymorphism 19:42407732 in exon 8 has been associated with higher fertility and embryonic survival rates. The objective of this study was to determine the relationship of COQ9 and STAT5A polymorphisms with reproductive parameters [calving to first heat interval (CFHI), DO and SPC]. Blood samples were taken from 112 lactating Holstein from a herd in México for allele genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). To estimate the association between reproductive parameters and genotypes, a linear mixed-effect model was performed. The COQ9 AG genotype was associated significantly with lower SPC (P<0.05) but not with DO or CFHI. No significant association with any reproductive parameter was found for STAT5A. Our findings suggest that the COQ9 18:25527339 polymorphism is a useful molecular marker for improvement of reproductive performance in dairy herds.