Efficient training approaches for optimizing behavioral performance and reducing head fixation time.
Anna NasrSina E DominiakKeisuke SeharaMostafa A NashaatRobert N S SachdevMatthew E LarkumPublished in: PloS one (2022)
The use of head fixation has become routine in systems neuroscience. However, whether the behavior changes with head fixation, whether animals can learn aspects of a task while freely moving and transfer this knowledge to the head fixed condition, has not been examined in much detail. Here, we used a novel floating platform, the "Air-Track", which simulates free movement in a real-world environment to address the effect of head fixation and developed methods to accelerate training of behavioral tasks for head fixed mice. We trained mice in a Y maze two choice discrimination task. One group was trained while head fixed and compared to a separate group that was pre-trained while freely moving and then trained on the same task while head fixed. Pre-training significantly reduced the time needed to relearn the discrimination task while head fixed. Freely moving and head fixed mice displayed similar behavioral patterns, however, head fixation significantly slowed movement speed. The speed of movement in the head fixed mice depended on the weight of the platform. We conclude that home-cage pre-training improves learning performance of head fixed mice and that while head fixation obviously limits some aspects of movement, the patterns of behavior observed in head fixed and freely moving mice are similar.